2.9.1 Exponenciální funkce

Předpoklady: 2714

Funkce, které už známe:

- \(y = x , \ y = x^2 , \ y = x^5 , \ldots \)
- \(y = x^{-1} = \frac{1}{x} , \ y = x^{-2} = \frac{1}{x^2} , \ y = x^{-4} = \frac{1}{x^4} , \ldots \)
- \(y = x^{\frac{1}{2}} = \sqrt{x} , \ y = x^{\frac{1}{3}} = \sqrt[3]{x} , \ldots \) (\(\sqrt{9} = 3 \), protože \(3^2 = 9 \). Odmocnina je inverzní k mocnině a proto ověřujeme hodnoty odmocnin pomocí mocnění)
- \(y = x^{\frac{7}{2}} = \sqrt[2]{x^7} , \ y = x^{\frac{2}{5}} = \sqrt[5]{x^2} , \ldots \)
- Dokázali bychom spočítat s libovolnou přesností i \(y = x^{\sqrt{2}} \) (\(\sqrt{2} \approx 1,414 \ldots \Rightarrow \) počítali bychom \(y = x^{\frac{14}{10}} , \ y = x^{\frac{141}{100}} , \ y = x^{\frac{1414}{1000}} , \ldots \)).

Když to shrneme:

- U všech uvedených funkcí měníme číslo \(x \), které umocňujeme (základ mocniny, mocněnec), číslo, na které umocňujeme (exponent, moci nitel), zůstává stejně.
- Umíme umocnit na libovolné reálné číslo.

⇒ Zkusíme to obrátit. Pořád stejně číslo (třeba dvojku) budeme umocňovat na různá čísla \(x \)
⇒ získáme funkci \(y = 2^x \).

Protože dokážeme umocnit na libovolné reálné číslo bude \(D(2^x) = \mathbb{R} \).

Př. 1: Doplň tabulku s hodnotami funkce \(y = 2^x \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>(\frac{1}{8})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{2})</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Pedagogická poznámka: Bohužel se skoro s jistotou objeví několik jedinců, kteří zapomněli na umocňování a budou počítat \(2^{-1} = -2 , \ 2^{-2} = -4 , \ldots \). Je potřeba je rychle odhalit a zlikvidovat.
Př. 2: Pomocí tabulky nakresli graf funkce \(y = 2^x \). Svůj obrázek ověř pomocí libovolného matematického programu.
Př. 3: Doplň do tabulky hodnoty funkce \(y = 2^x \) pro \(x \) uvedená v tabulce. Pro každou hodnotu \(x \) nejprve odhadni hodnotu \(y \) a poté ji urči pomocí kalkulátoru s přesností na tři desetinná čísla. Získané hodnoty využij k zakreslení do grafu funkce.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\frac{1}{2})</th>
<th>(\pi)</th>
<th>(-\sqrt{3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\frac{1}{2})</th>
<th>(\pi)</th>
<th>(-\sqrt{3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odhad (y)</td>
<td>0 < (\frac{1}{2}) < 1</td>
<td>(3 < \pi < 4)</td>
<td>(-2 < -\sqrt{3} < -1)</td>
</tr>
<tr>
<td></td>
<td>(2^0 < 2^\frac{1}{2} < 2^1)</td>
<td>(2^3 < 2^\pi < 2^4)</td>
<td>(2^{-2} < 2^{-\frac{1}{2}} < 2^{-1})</td>
</tr>
<tr>
<td></td>
<td>(1 < 2^\frac{1}{2} < 2)</td>
<td>(8 < 2^\pi < 16)</td>
<td>(\frac{1}{4} < 2^{-\frac{1}{2}} < \frac{1}{2})</td>
</tr>
<tr>
<td>y</td>
<td>$rac{1}{2} = \sqrt{2} \approx 1,414$</td>
<td>$2^x \approx 8,825$</td>
<td>$2^{-\sqrt{3}} \approx 0,301$</td>
</tr>
</tbody>
</table>

Získané body jsou v grafu znázorněny oranžově.

Př. 4: Pomocí grafu a tabulky urči vlastnosti funkce $y = 2^x$

$D(f) = R$ (dvojku dokážeme umocnit na cokoliv)

$H(f) = (0; \infty)$ (výsledky umocňování dvojky musí být vždy kladné, protože umocňujeme kladné číslo)

Funkce je rostoucí v R.

Funkce je zdola omezená, není shora omezená, nemá maximum ani minimum.

Funkce není ani lichá ani sudá.

Funkce prochází bodem [0;1] (proč je to důležité, uvidíme příští hodinu).

Exponenciální funkce je nejen rostoucí, ale dokonce nejrychleji rostoucí funkcí. Zkusíme si porovnat funkce $y = x^{100}$ (ta roste hodně rychle) a $y = 2^x$ (obyčejná exponenciální funkce).

Nejdříve si nakreslíme grafy $y = x^{100}$ a $y = 2^x$:
Z grafů nevypadá, že by funkce $y = 2^x$ měla moc šancí $y = x^{100}$ předběhnout.

Zkusíme počítat hodnoty:

$x = 10$

<table>
<thead>
<tr>
<th>$y = x^{100}$</th>
<th>10^{100}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = 2^x$</td>
<td>2^{10}</td>
</tr>
</tbody>
</table>

Zdá se to jasné, $y = 2^x$ nemá šanci.

$x = 100$

<table>
<thead>
<tr>
<th>$y = x^{100}$</th>
<th>100^{100}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = 2^x$</td>
<td>2^{100}</td>
</tr>
</tbody>
</table>

$x = 500$

<table>
<thead>
<tr>
<th>$y = x^{100}$</th>
<th>500^{100}</th>
</tr>
</thead>
</table>

| $y = 2^x$ | 2^{500} |

$7888609052210118054117285652827862296732064351090230$

$0477027893066406250000000000000000000000000000000000000$
$y = 2^x$

<table>
<thead>
<tr>
<th>x</th>
<th>$y = 2^x$</th>
<th>$y = x^{100}$</th>
<th>$y = 2^{1000}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
</tr>
<tr>
<td>2</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
</tr>
<tr>
<td>3</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
</tr>
<tr>
<td>4</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
</tr>
<tr>
<td>5</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
</tr>
</tbody>
</table>

Že by se funkce $y = 2^x$ přece jenom chytla?

$x = 1000$

$y = x^{100}$

1000^{100}

2^{1000}

Hodnota funkce $y = 2^x$ je už více než 10x větší!!

$x = 2000$

$y = x^{2000}$

2000^{2000}

2^{2000}

Z funkce $y = x^{100}$ se stává outsider.

$x = 10000$

$y = x^{1000}$

1000^{1000}

2^{10000}
Nezbývá než konstatovat, že funkce \(y = x^{100} \) je v porovnání s funkcí \(y = 2^x \), co se týká rychlosti růstu, totální loser.

Pedagogická poznámka: Souboj funkcí počítáme na živo pomocí programu MuPAD.

Pedagogická poznámka: Následující příklad pojímám jako polopisemku. Jsou k dispozici dvě sady zadání (každé pro jedno oddělení). Student, kteří za 15 minut nestihnou udělat první dva příklady, mají mínus, studenti, kteří stihnou všechno, mají plus.

Př. 5: Nakresli grafy funkcí: a) \(y = 2^{x+1} \)
 b) \(y = 2^{x-1} \)
 c) \(y = 2^{x-2} - 1 \)
 d) \(y = 2^{x+2} + 1 \)
 e) \(y = 2^{|x|} \)
 f) \(y = 2^{x-2} \)
 g) \(y = 2 \cdot 2^{x-1} \)
 h) \(y = \frac{2^{x+1}}{2} \)

Pokud uvažujeme \(y = 2^x = f(x) \), platí:

\[
y = 2^{x+1} = f(x+1)
\]

Zvolíme \(x \).

Vypočteme \(x+1 \).

Nakreslíme funkci: \(y = f(x+1) = 2^{x+1} \).

Pokud uvažujeme \(y = 2^x = f(x) \), platí:

\[
y = 2^{x-1} = f(x-1)
\]

Zvolíme \(x \).

Vypočteme \(x-1 \).

Nakreslíme funkci: \(y = f(x-1) = 2^{x-1} \).

Pokud uvažujeme \(y = 2^x = f(x) \), platí:

\[
y = 2^{x-2} = f(x-2) - 1
\]

Zvolíme \(x \).

Vypočteme \(x-2 \).

Nakreslíme funkci: \(y = f(x-2) = 2^{x-2} \).

Nakreslíme funkci: \(y = f(x-2) - 1 = 2^{x-2} - 1 \).

Pokud uvažujeme \(y = 2^x = f(x) \), platí:

\[
y = 2^{x+2} = f(x+2) + 1
\]

Zvolíme \(x \).

Vypočteme \(x+2 \).

Nakreslíme funkci: \(y = f(x+2) = 2^{x+2} \).

Nakreslíme funkci: \(y = f(x+2) + 1 = 2^{x+2} + 1 \).
Pokud uvažujeme \(y = 2^x = f(x), \) platí:

\[y = 2^{x-1} = 2f(x-1). \]

Zvolíme \(x. \)

Vypočteme \(x-1. \)

Vypočteme \(1-|x|. \)

Nakreslíme funkci \(y = f(1-|x|) = 2^{x-1}. \)

Nakreslíme funkci \(y = f(x) = 2^x. \)

Nakreslíme funkci \(y = f(x) - 2 = 2^x - 2. \)

Pokud uvažujeme \(y = 2^x = f(x), \) platí:

\[y = 2^2 = 2f(x-1). \]

Zvolíme \(x. \)

Vypočteme \(x-1. \)

Nakreslíme funkci \(y = f(x-1) = 2^{x-1}. \)

Nakreslíme funkci \(y = 2f(x-1) = 2 \cdot 2^{x-1}. \)

Nakreslíme funkci \(y = \frac{2^{x+1}}{2} = \frac{1}{2} f(x+1). \)

Zvolíme \(x. \)

Vypočteme \(x+1. \)

Nakreslíme funkci \(y = f(x+1) = 2^{x+1}. \)

Nakreslíme funkci \(y = \frac{1}{2} f(x+1) = \frac{2^{x+1}}{2}. \)
Př. 6: Petáková:
strana 30/cvičení 66 \(f_3, f_4, f_6 \)
strana 30/cvičení 67 \(g_1, g_2 \)

Shrnutí: Funkce s neznámou v exponentu se nazývá exponenciální a je nejrychleji rostoucí funkcí.