3.5.2 Definiční obor I

Předpoklady: 030501

Př 1: Vypočti. Výsledky uveď také jako složené číslo.

a) \( \frac{2}{3} + \frac{3}{5} \)

\[
\begin{align*}
\frac{2}{3} + \frac{3}{5} &= \frac{2 \cdot 5}{3 \cdot 5} + \frac{3 \cdot 3}{5 \cdot 3} = \frac{10 + 9}{15} = \frac{19}{15} = 1 \frac{4}{15}
\end{align*}
\]

b) \( \frac{5}{6} : \frac{15}{24} \)

\[
\begin{align*}
\frac{5}{6} : \frac{15}{24} &= \frac{5 \cdot 24}{6 \cdot 15} = \frac{5 \cdot 6 \cdot 4}{6 \cdot 5 \cdot 3} = \frac{4}{3} = 1 \frac{1}{3}
\end{align*}
\]

c) \( 2 - 4 \left( \frac{1}{3} - \frac{1}{4} \right) = 2 - 4 \left( \frac{4}{3} - \frac{3}{4} \right) = 2 - 4 \cdot \frac{1}{12} = 2 - \frac{1}{3} = 2 - \frac{5}{3} = 1 \frac{2}{3}
\]

d) \( \frac{4}{5} \cdot \frac{12}{25} \)

\[
\begin{align*}
\frac{4}{5} \cdot \frac{12}{25} &= \frac{4 \cdot 12}{5 \cdot 25} = \frac{4 \cdot 5 \cdot 3}{5 \cdot 3} = \frac{5}{3} = 1 \frac{2}{3}
\end{align*}
\]

Př 2: Je dán lomený výraz \( \frac{a - 2}{a^2 - a} \).

a) Urči jeho čitatel a jmenovatel.

b) Zapiš ho bez zlomkové čáry.

c) Urči jeho hodnotu pro \( a \in \{-2; 0; 2; 10\} \).

a) \( \frac{a - 2}{a^2 - a} \):

- čitatel: \( a - 2 \),
- jmenovatel: \( a^2 - a \)

b) \( \frac{a - 2}{a^2 - a} = (a - 2) : (a^2 - a) \)

c) hodnoty:

- \( a = -2 : \frac{a - 2}{a^2 - a} = \frac{-2 - 2}{(-2)^2 - (-2)} = \frac{-4}{4 + 2} = \frac{-4}{6} = \frac{-2}{3} \),
- \( a = 0 : \frac{a - 2}{a^2 - a} = \frac{0 - 2}{(0)^2 - (0)} = \frac{-2}{0} \) - nedáva smysl, nejde dělit nulou,
\[ a = 2: \quad \frac{a-2}{a^2-a} = \frac{2-2}{2^2-2} = \frac{0}{6} = 0, \]
\[ a = 10: \quad \frac{a-2}{a^2-a} = \frac{10-2}{10^2-10} = \frac{8}{90} = \frac{4}{45}. \]

Co se stalo, když jsme se pokusili do výrazu \( \frac{a-2}{a^2-a} \) dosadit \( a = 0 \)? Ve jmenovateli se objevila 0, ale to se nesmí stát, protože nulou nelze dělit.

**Říkáme:**

- výraz \( \frac{a-2}{a^2-a} \) není pro \( a = 0 \) definován (nemá pro \( a = 0 \) smysl),
- výraz \( \frac{a-2}{a^2-a} \) je definován pro \( a = 2 \) (má pro \( a = 2 \) smysl).

**Příklad 3:** Existují ještě další reálné čísla, pro která nemá výraz \( \frac{a-2}{a^2-a} \) smysl?

Dalším takovým číslem je číslo 1, protože po jeho dosazení bychom ve jmenovateli také dostali 0.

\[ \frac{a-2}{a^2-a} = \frac{1-2}{1^2-1} = \frac{-1}{0} \]

Skutečnost, že výraz \( \frac{a-2}{a^2-a} \) je definován pro všechna reálná čísla kromě čísel 0 a 1

zapisujeme pomocí podmínek \( \frac{a-2}{a^2-a} (a \neq 0; a \neq 1) \), případně \( \frac{a-2}{a^2-a} (a \neq 0;1) \).

**Příklad 4:** Zapiš podmínky, za kterých jsou definovány následující lomené výrazy.

a) \( \frac{2}{x+3} \)  b) \( \frac{x}{x+1} \)  c) \( \frac{x-2}{3} \)  d) \( \frac{2}{3x+2} \)  e) \( \frac{x+2}{(x-1)(x+3)} \)

a) \( \frac{2}{x+3} \): \( x+3 \neq 0 \)  \( \Rightarrow \)  \( x \neq -3 \).

b) \( \frac{x}{x+1} \): \( x+1 \neq 0 \)  \( \Rightarrow \)  \( x \neq -1 \).

c) \( \frac{x-2}{3} \): žádná podmínka, jmenovatel neobsahuje proměnnou.

d) \( \frac{2}{3x+2} \): \( 3x+2 \neq 0 \)  \( \Rightarrow \)  \( x \neq -\frac{2}{3} \).
e) \( \frac{x+2}{(x-1)(x+3)} \): ve jmenovateli je součin dvou závorek, pokud je jedna z nich rovna nule, nezáleží na tom, jaké číslo vyjde v druhé závorce:

- \( x-1 \neq 0 \Rightarrow x \neq 1 \),
- \( x+3 \neq 0 \Rightarrow x \neq -3 \),
- celkové podmínky \( x \neq -3; 1 \).

Př. 5: Zapiš podmínky, za kterých jsou definovány následující lomené výrazy.

\[ \text{a) } \frac{2x}{x(x-2)} : x \neq 0; 2. \]
\[ \text{b) } \frac{x}{x(2x+1)(1-3x)} : x \neq \frac{1}{2}; 0; \frac{1}{3}. \]
\[ \text{c) } \frac{a+3}{a^2-3a} : \text{jmenovatel neobsahuje součin } \Rightarrow \text{ zkusíme ho vytvořit.} \]
\[ \frac{a+3}{a^2-3a} = \frac{a+3}{a(a-3)} : a \neq 0; 3. \]
\[ \text{d) } \frac{x+2}{x^2-1} : x \neq \pm 1. \]

Př. 6: Rozhodni, zda výraz \( \frac{a+b}{a(a-b)} \) je definován pro následující dvojice čísel:

a) \( a = 0; b = 2 \),

b) \( a = 1; b = -1 \),

c) \( a = 4; b = 4 \),

d) \( a = -3; b = -3 \).

Urči podmínky, za kterých je tento výraz definován.

\[ \text{a) } a = 0; b = 2 \]
\[ \frac{a+b}{a(a-b)} = \frac{0+2}{0(0-2)} = \frac{2}{0} \Rightarrow \text{pro } a = 0; b = 2 \text{ není výraz } \frac{a+b}{a(a-b)} \text{ definován.} \]

\[ \text{b) } a = 1; b = -1 \]
\[ \frac{a+b}{a(a-b)} = \frac{1+(-1)}{1[1-(-1)]} = \frac{0}{2} \Rightarrow \text{pro } a = 1; b = -1 \text{ je výraz } \frac{a+b}{a(a-b)} \text{ definován.} \]

\[ \text{c) } a = 4; b = 4 \]
\[ \frac{a+b}{a(a-b)} = \frac{4+4}{4(4-4)} = \frac{8}{0} \Rightarrow \text{pro } a = 4; b = 4 \text{ není výraz } \frac{a+b}{a(a-b)} \text{ definován.} \]
d) $a = -3; b = -3$
\[
\frac{a + b}{a(a - b)} = \frac{-3 + (-3)}{(-3) \cdot ((-3) - (-3))} = \frac{-6}{0} \Rightarrow \text{pro } a = -3; b = -3 \text{ není výraz } \frac{a + b}{a(a - b)} \text{ definován.}
\]

Ve jmenovateli výrazu $\frac{a + b}{a(a - b)}$ je součin dvou členů $\Rightarrow$ ani jedna z nich nesmí být rovna nule $\Rightarrow a \neq 0$ a $a - b \neq 0 \Rightarrow a \neq b$.

Výraz $\frac{a + b}{a(a - b)}$ je definován právě když $a \neq 0$ a $a \neq b$.

**Příklad 7:** Definičním oborem výrazu $\frac{x}{x - 4}$ jsou všechna reálná čísla různá od 4. Vysvětli (definuj) význam termínu definiční obor lomeného výrazu.

Pro výraz $\frac{x}{x - 4}$ platí podmínka $x \neq 4 \Rightarrow$ definiční obor výrazu tedy obsahuje všechna čísla, kromě čísla zakázaného podmínkou $\Rightarrow$ definičním oborem výrazu rozumíme množinu všech čísel, která můžeme do výrazu dosadit.

**Definičním oborem výrazu rozumíme množinu všech čísel, která můžeme do výrazu dosadit.**

**Příklad 8:** Definiční obor proměnné $x$ ve výrazu $\frac{x}{x - 4}$ můžeme zapsat $D(x) = R - \{4\}$. Zapiš definiční obory všech výrazů z prvního příkladu.

a) $\frac{x}{x + 3}, x \neq -3 \Rightarrow D(x) = R - \{-3\}$

b) $\frac{2}{2x - 5}, x \neq \frac{5}{2} \Rightarrow D(x) = R - \left\{\frac{5}{2}\right\}$

c) $\frac{2x + 1}{x(y - 2)}, x \neq 0, y \neq 2 \Rightarrow D(x) = R - \{0\}$

d) $\frac{2x}{x^2 + 1} \Rightarrow D(x) = R$.

**Příklad 9:** Najdi lomený výraz s proměnnou $x$, jehož definičním oborem je množina $R - \{2\}$ a jehož hodnota je pro $x = 4$ je 5. Pokud existuje více možností, snaž se jich zapsat co nejvíce.

Definičním obor: $R - \{2\} \Rightarrow$ musí platit podmínka $x \neq 2 \Rightarrow$ jmenovatel musí obsahovat výraz $x - 2$. 
Pro $x = 4$ je hodnota výrazu $x - 2 = 4 - 2 = 2$, pokud má být hodnota celého lomeného výrazu 5, musí být hodnota jmenovatele pětkrát větší $\Rightarrow$ hledaným výrazem může být zlomek $\frac{10}{x - 2}$.
Zlomky i lomené výrazy můžeme libovolně rozšířovat $\Rightarrow$ správným řešením budou i další výrazy: $\frac{20}{2x - 4}$, $\frac{30}{3x - 6}$, ...

**Dodatek:** Výsledky z předchozího příkladu je možné zapsat pomocí parametru $k$ takto: $\frac{10k}{k(x - 2)}$, kde $k$ je libovolné nenulové číslo. Najít můžeme i další řešení, která mají v čitateli neznámou $x$: $\frac{5x}{2(x - 2)}$ a její varianty vzniklé rozšířováním číslem nenulovým číslem $k$: $\frac{5kx}{2k(x - 2)}$.

**Shrnutí:** Definiční obor lomeného výrazu tvoří všechna čísla, která do něj můžeme dosadit.